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I. INTRODUCTION

The extension of the theory of cubic splines to more than one dimension
was initiated by Birkhoff and Garabedian [4], and elaborated upon by
DeBoor [9] and Ahlberg, Nilson, and Walsh [2]. DeBoor's bicubic spline
interpolation scheme [9; p. 214] has become the standard scheme for rec
tangular regions. However, for more general rectangular polygons, the
question of how "best" to characterize bicubic splines appears to be an open
question. In [7, 8] and this paper the authors consider this question.

In [7] the space S12(fJi, 7T) of bicubic splines over a partitioned rectangular
polygon (fJi,7T) was defined (in the most natural way) to be the subspace of
C(2)[fJi] consisting of functions which reduce to bicubic (2:.:,i=O cxiiXiyj)
polynomials in each rectangular element [Xi' Xi+1] X [Yi, YHl] of the mesh
7T. An algebraically well set interpolation scheme in the sense of [3; p. 169]
was given for S12(fJi, 7T) in [7, Theorem 3].

The main purpose of this paper is to consider a bicubic spline interpolation
scheme (Theorem 4) which (unlike the scheme given in [7; Theorem 3]), is
analytically well set for a class of uniformly partitioned rectangular polygons.
That is, as the mesh 7T is successively refined, the associated sequence of inter
polants of a sufficiently smooth function f converges to f (Theorem 5). This

* Most of this work was performed while C. A. Hall was at the Bettis Atomic Power
Laboratory.
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scheme is the first convergent bicubic spline interpolation scheme applicable
to a wide variety of rectangular polygons.

In Section 2 we discuss a univariate cubic spline interpolation scheme
which is algebraically well defined for meshes containing an even number of
mesh points and which is inconsistent for an odd number of mesh points
(Theorem 2). In the former case it is also analytically well set (Theorem 3).
This scheme is then used in the derivation of our main results given in
Sections 3 and 4.

2. UNIVARIATE CUBIC SPLINES OF INTERPOLATION

Let us first establish some notation. Let (/,7T) denote a uniformly parti
tioned interval I = [a, b] where 7T : a = Xo < ... < X m = b. Leth = (b - a)jm
be the mesh spacing. The 2(m + 1)dimensional smooth Hermite space of piece
wise cubic polynomials in Cl[I] is denoted by H2(I,7T) [6]. For a given
function f, the smooth Hermite interpolant Uf of f, is the unique element in
HV, 7T) satisfying

A. UiXi) = !(Xi),

B. U/(Xi) = r(Xi),

o :(; i :(; m,

o :(; i :(; m.
(1)

Thus the 2(m + 1) values {Uf(Xi), U/(Xi), 0 :(; i :(; m} are the "coordinates"
of Uf relative to the standard interpolating basis for H2(I, 7T) [6]. In fact, for
Xi-l :(; x :(; Xi ,

where x = x - Xi-l and the cubics H;(x) are given, e.g., in [10].
Of primary concern here is the (m + 3)-dimensional subspace S12(/, 7T) of

cubic splines s defined by

(3)

The more stringent continuity requirement, s E C2(I), is equivalent [1,3] to
the following set of linear constraints on the "Hermite coordinates" of s:

h[si-l + 4s/ + S;+1] = 3[Si+l - si-d, l:(;i:(;m-l. (4)

Since dim S12(l,7T) = m + 3, specifying a subset of (m + 3) Hermite
coordinates which uniquely determine all Hermite coordinates (or equivalent
1y satisfy (4)) is equivalent to defining an algebraically well set interpolation
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scheme. We consider three interpolation schemes or splines of interpolation
denoted Sf , rf , and l'f which are given in the following

DEFINITION 1. Given {/(x;),j'(x;) : 0 ~ i ~ m} we define three splines
of interpolation, denoted respectively by Sf' rf ,and Vf ,as the unique elements
in S2(/, 77) satisfying the following

Scheme A: s,(x;) = f(xi), o ~ i ~ m,
S/(Xi) = f'(xJ, j= O,m.

Scheme B: rf(xi) = f(xi), j = 0, 1,
(5)

r/(xi) = f'(x;), o ~ i ~ m.

Scheme C: l'f(Xi) = f(xi), j = 0, m,
l'/(Xi) = f'(x i), o ~ i ~ m (m odd).

Remark. The cubic spline six) in scheme A is the "usual" cubic spline
interpolant of/(x). (See, e.g., [1,3,5,9]). The cubic spline r,(x) is a spline of
extrapolation and is discussed in [7J and [8]. By contrast, Vf(X) is well defined
only ifm is odd as we show in Theorem 2, below.

Our primary concern in this section is to derive error bounds for the three
types of interpolating splines defined above, subject to errors in the given data
(5). We first state results which are contained in [7, 8] and which yield
(Corollaries 1 and 2) the desired error bounds for schemes A and B.

THEOREM I [7,8]. Letfto C5[IJ and,jor gil'en gi and 7J;, let

(A) s(x) be the unique cubic spline (scheme A) satisfying

s(x;) = f(xi) + gi' 0 ~ i ~ m, s'(Xj) = f'(x;) + 7J; ,j = 0, m;

(B) r(x) be the unique cubic spline (scheme B) satisfying

r(Xi) = f(xi) + gi' i = 0, I, r'(xi) = f'(x;) + 7Ji' 0 ~ j ~ m.

Ifl gi I ~ K 1 and l7Ji I :(; K 2 , then

I(s - I)' (Xi) I ~ (1/60)/1/(5) II h4 + (6/h) K1 + K2

and

I(r - f)(Xi)! :(; «b - a)/180)/l/(5) II h4 + 3K1 + (b - a) K2 • (6B)

From [10; Eqs. (9) and (I1)J and (6A, B) above, we have

COROLLARY 1. lis - f/l", = O(h4 + K1 + K2h).
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COROLLARY 2. II r - flioo = OW + K I + K2).

We next establish existence and uniqueness of scheme C.

THEOREM 2. Let values gi' i = 0, m and g/, 0 ~ i ~ m be given. There
exists a unique spline vgESI2(l, 7T) such that

and Vg'(Xi) = g'(Xi), 0 ~ i ~ m, (7)

if and only if m is odd.

Proof. From (4) the Hermite coordinates of v = vg(if it exists) must satisfy

AV= K (8)

v = (t'l , ... , t'm-I) and

where

A~ r-~~~),l -1 oj

Ih(gO' + 4g/ + g2') + 3go ,

Ki = h( g~-I + 4g/ + g~+l)'

h(g;"-2 + 4g;"-1 + gm') - 3gm ,

i = 1,
2 ~ i ~ m - 2,
i=m-l.

(9)

If m is odd (even number of mesh points) then it is easily verified that A is
nonsingular and in fact

A-I = S - Sf

o

Wheres~~~O
~ ~ ~ ~~....
1010 ..·10

(10)

However, if m is even (odd number of mesh points) then A is in fact an
odd ordered skew-symmetric matrix and hence, singular. Furthermore, for
m even, the sum of the odd number rows in A is zero which implies the
system is inconsistent unless r.::: K2i- 1 = O. Obviously then there exist
values gi , i = 0, m and g;', 0 ~ i ~ m such that (10) is inconsistent and the
proof of Theorems 2 is complete.

Analogous to Theorem 1 we have

THEOREM 3. For given gi' 'Y}i' and fE C5 [I), let v be the unique spline
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(Scheme C) in S2(1,7T), (7T with an even number of mesh points) such that
L'i = /; + t;, i = 0, m and v;' = f/ + 7]i, 0 ~ i ~ m. If I ~; 1~ K1 and
I 7]; I ~ K2 ' then

I j ' 1 (b -- a) (5) h4 3[ (b )
1'; - ; ~ 60 II. II + K1 + - a K2]

for I ~ i ~ m - l.

(II)

Proof Analogous to [10; Eqs. (6) and (7)] it follows from (8) that for
K 1 = K 2 = Owe have

AE = Z (I 2)

where E i = v;+! - fi+l and Zi = 1/30j(5)(8;) h5, X; ,,:;; 8; ~ X''+l . From (10)
it follows that

II E Iloc ~ (m - 0/211 Z II", ~ (b - a)/60 11/(5) II h4• (13)

Perturbations due to ~; and 7]; modify (I2) as

AE = Z + rp + ~ (14)

where from (9) ~i = h(7];-l + 47]; + 7]i+I), I ~ i ~ m - I and rp; = 3~o

for i = I; = 0 for 2 ~ i ~ m - 2; and = 3~m for i = m - l. From (10)
it follows that

II E 1100 ~ II Ell", + /I A-lrp II + /I A-III '11 ~ II ~ II E 1100 + 3KI + «m - 0/2)6hK2,

from which (II) follows.

COROLLARY 3. II v - flloo = 0(h4 + K] + K2).

Proof As in [10] write

v - f= (v - Ut) + (Ut -f).

The second term is 0(h4) from [6]. The first term

(IS)

for x E [x; , Xi+l]' Now as h -+ 0 Hi(x) = 0(1) for i = 1,2 and = O(h) for
i = 3,4. Hence from (II), II(v - u,)11 = 0(h4 + K] + K2), and the proof
of Corollary 3 is complete.
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3. BICUBIC SPLINE INTERPOLATION SCHEME

In [7; Theorem 4] it was first establish that if (rJf,1T) is a partitioned
rectangular polygon then

where M is the number of mesh points and B is the number of boundary
mesh points. This compares with [6]

for the smooth Hermite space of order 2. Since S12(rJf,1T) is a subspace of
H2(rJf, 1T), one way of specifying an algebraically well set interpolation scheme
is to choose (if possible) a subset of d Hermite coordinates which span
S12(.~, 1T). We now state and prove our main result of this section.

THEOREM 4. Let (rJf,1T) be a uniformly partitioned rectangular polygon
such that each mesh line of1T contains an even number of mesh points. Let the
following values be given.1

(i)

(ii)

(iii)

(iv)

f\~·1)

"
f \~·O).,
f\~·1).,
fi;

at each mesh point (Xi, Yi),

at the end points of each vertical mesh line,

at the end points of each horizontal mesh line,

at the four corners of an amenable [7] set of corner points.

Then there exists a unique spline Vf E S12(rJf, 1T) such that

(17)

at the respective values and points specified in (i)-(iv).

Remark. Note that not all rectangular polygons can be partitioned such
as to satisfy the above hypothesis. For example in Fig. 1, the mesh lines AB
and CD must each contain an even number of mesh points, but this implies
the mesh line EF contains an odd number of mesh points. Hence the region in
Fig. 1 does not satisfy the hypothesis, irrespective of 1T.

Proof. Basically, the task is to show that the smooth Hermite coordinates
{vjr.s) : 0 .:::;; r, s .:::;; I} for each point (Xi, Yi) in 1T can be derived in a unique
manner. This is indeed possible with the use of the three univariate splines of
interpolation delineated in Section 2. The general proof is analogous to the
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proof of [7; Theorem 3] and will be omitted in lieu ofthe following prooffor
a specific Bi.

Consider the region in Fig. 2. Of primary importance is the fact that Vt
(if it exists) belongs to C(2,2)[Bi][7, Theorem 2] and hence Vt(Xi ,y), vtCx, y;),
vj!·O'(Xi , y) and vjO.I)(X, y;) are all univariate cubic splines for each i, j.

°2

°3

°1 °4
XI •••.

FIGURE 2

••.•.••• X
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Step 1. Using the notation of Section 2 we construct a scheme-C spline
of interpolation along each horizontal and vertical mesh line to compute
vj};O) anx vj~/' at each mesh point. For example

V(O.I) V(O.I) and vCt•I)
tOI 'tI3,1 til , O~i~13 (I 8)

are known, and hence by Theorem 2 the values vj~il), 0 < i < 13 are uniquely
determined.

Step 2. Construct a scheme-C spline along x = X o , x = X 13 , and
y = Yo to compute viii along these lines. For example

V and ,,(0.1)
Vtoo, t07 v to; , o ~j ~ 7, (19)
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are known and hence by Theorem 2 the values VtOi , 0 <j < 7, are uniquely
determined.

Step 3. Construct a scheme-C spline along y = Yi' j = 1,2,3, to
compute Vfij along these lines. For example,

, d ,h.ol
Vt02 , l,13.2 an tfi.2' o ~ i ~ 13, (20)

are known and hence the values Vfi2 , 0 < i < 13 are uniquely determined.

Step 4. Construct a scheme-B spline along x = Xi for y :? Y2 and
1 ~ i ~ 9 to compute Viii along these lines. For example,

l ' l' ,,(0.1)
172' 173' v f7 j , 2 ~j ~ 6, (21)

are known and hence from [8] the values Vf7j ,4 ~ j ~ 6 are uniquely deter
mined.

Hence the Hermite coordinates are uniquely determined at each (Xi' Yi) E TT
such that V, E C(2.2J[31]. Note that the consistency of these values follows as
in [7].

4. CONVERGENCE THEOREM

The following theorem establishes that the interpolation scheme in Section 3
is analytically well set for a wide class of sequences of partitionings. Moreover
the convergence is fourth order and hence comparable to de Boor's bicubic
spline interpolant for rectangular regions.

THEOREM 5. Let (31, TT) be a uniformly partitioned rectangular polygon.
Assume that each mesh line of TT contains an even number of mesh points (see
the remark after Theorem 4). Let Vf be the spline interpolant of
fE C(5.1I[31] n C(1.51[31] described in Theorem 4. Then as h ~ 0

II(Vt - 1)</,:+111100 = O(hHk+!I), o ~ k + I ~ 3. (22)

Proof Consider the error function e(x, y) = vtCx, y) - I(x, y). As in [8]
we write

e(x, y) = {Vf(X, y) - U,(X, y)} + {Uf(X, y) - I(x, y)} (23)

where Ut(x, y) E H2(31, TT) is the smooth Hermite interpolant to f, [6]. From
[6; p. 249] we have

II(ul - j)(k.!) II", = O(hHk+!), 0 ~ k + I ~ 3, as h~ O. (24)
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Next we note that for (x, y) E [Xi' Xi+l] X [Yi' Yi+l]'

2 2

I(vf - Uf)(k,z) (x, Y)I .,:;; L L {I emn I . I H~)(X) G~:)(Y)I
n=l1n=l

+ I e:;~o) I . I H~~lx) G~)(Y)I

+ I e~~l) I . I H~k)(."i) G~~2(ji)IJ (25)

where e::;.l) == eJ~~~l.i+n-l' x = x - Xi, ji = Y - Yi and the Hn(x) and
Gm ( ji) are given in [10]. Note that Gm( y) - H m( y) for a uniform mesh and
H:;>(x) = O(h-k ) for m = 1,2 and H:!:)(x) = O(h1-k) for m = 3,4. Hence
to bound (25) as O(hHk+!» we need only show that

O~k+I~1. (26)

We verify (26) for the region f!£ in Fig. 1. The general case follows in an
analogous manner.

Consider the four step construction in the proof of Theorem 4. Let us
determine the propagation of errors.

Steps 1-2. In step 1 and step 2 all the values were known exactly and
hence from Corollary 3 with K1 = K2 = 0 we have that e~;.O) and e:::;.l) are
O(h4) as h --> 0 at all mesh points and emn is O(h4) at those points considered
in step 2.

Step 3. Applying Corollary 3 with K1 and K2 as O(h4) we note that emn

is O(h4) at those points considered.

Step 4. Applying Corollary 2 with K1 and K2 as O(h4) we note that emn is
O(h4) at those points considered.

Hence (26) is established and the proof is complete.

5. ALTERNATE BICVBIC SCHEMES

The coordinates or parameters chosen in Theorem 4 are by no means the
only possible coordinates for an algebraically well set scheme. The reason
for this choice was the applicability to a broad class of rectangular polygons.
It's also a more "symmetric" choice of parameters than those in Examples 1
or 2 below. Given a specific region it is not difficult in light of Theorems 1
and 3 and their corollaries to specify other algebraically and analytically
well set interpolation schemes. However, invariably such a scheme is quite
dependent on the specific region. We now delineate (without proof) several
such schemes.
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EXAMPLE 1 [5, 8]. Let (L,1T) be a partitioned L-shaped region (Fig. 3).
There exists a unique bicubic spline s which interpolates to f E CP[L] at each
mesh point, to the normal derivative at each boundary mesh point not on
CD, and to f(1.I) at the corners A, B, F, and E as well as along CD excluding
the point D. Ifp = 4 and the mesh rati02 is bounded then

II(s - f)(k.l) II = O(h3- lkH ),

J I

H G

F E

0

A
FIGURE 4

c

B

2 If 1t is a nonuniform mesh then the mesh ratio is by definition

f3 "'" maxii{xi - Xi-l ,Yi - Yi_l}/min{xi - X'-l ,Yi - Yi-l}·

Note that the numerator is the maximum mesh spacing hand fl = 1 for 1t uniform.
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and if p = 5 and 11' is uniform then

I,(s - f)(k,l) II = O(hH!.+l), o ~ k + I ~ 3.

The proof of the above result can easily be modified to yield the following

EXAMPLE 2. Let (T,7T) be a partitioned "step" region (Fig. 4). There
exists a unique bicubic spline s which interpolates to f E C5[T] at each mesh
point; to the normal derivative at each boundary mesh point not on CD, EF,
or GH; and to f(1.0 at the corners A, B, J, I as well as along CD, EF, GH
excluding the points D, F, and H. If the mesh ratio is bounded then

il(s - f)(J.:.ll II = OW-(J.:+l),

If 7T is uniform then

II(s - f)(J.:·ll II = OW-(HlJ),

o ~ k + I ~ 3.

o~ k + I ~ 3.

(27)

(28)

Our final example indicates how the main interpolation scheme (Theorem 4)
can often be modified to handle regions such as given in Fig. I.

EXAMPLE 3. Let (Yi, 11') be the region in Fig. 5 partitioned by 11' = 11'1 X 11'2

where 11'1: Xo < Xl < ... < X 2p-1 < ... < X 2n , 11'2: Yo < Y1 < ... < Y2m-1

are uniform partitions and each vertical mesh line contains an even number
of mesh points. (See the remark after Theorem 4.)

B C

0 E

A J F

G

I

K

H

X
2p-1

FIGURE 5
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There exists a unique bicubic spline s which interpolates to f E C5[.?l] at
A, B, C, and G; to the tangential derivativef(l,Ol along Be, GH, DI, and AJ
excluding the reentrant corners D and J; tof(o.l) along AB, CD, JG, EF, and
KH excluding the reentrant corners D and J: and fg· 1l at each mesh point
of TT. Further,

Il(s - j)(k.l) II = OW-(k+l)),
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